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We have simulated the two- and three-dimensional Ising models at their 
respective critical points with a conventional Monte Carlo algorithm. From the 
power spectrum of the magnetization autocorrelations we have determined the 
dynamic critical exponents and obtained the values z =2.16-2.19 and z =  2.05, 
in agreement with the results quoted in the literature. We have also studied the 
power spectrum for the Karda~Parisi-Zhang and Sun-Guo-Grant  equations 
describing interface dynamics. Arguments similar to what was recently used to 
conclude that z = 4 - r /  for model B in critical dynamics were applied to the 
Sun~Guo-Grant growth model and the known exact values for the roughening 
and dynamic exponents were obtained. From an analysis of the corresponding 
power spectrum in self-organized critical sand models one obtains a recently 
proposed hyperscaling relation. 

KEY WORDS:  Ising model; dynamic exponents; power spectra; Monte 
Carlo simulations; dynamics of interface growth; self-organized criticality. 

1. INTRODUCTION 

The static exponents for the two-dimensional Ising model are known 
exactly, (1) but the value of the dynamic critical exponent is still quite 
controversial. (2-7) Near a phase transition point the relaxation of the slowest 
modes diverges as ~ ~ ~ ,  where z is the dynamic critical exponent and 
the correlation length (a phenomenon known as critical slowing down). 

The value of the dynamic exponent depends on the dynamics of the 
system characterized by a variety of models. (2) Model A contains the Ising 
model with nonconserved magnetization (Glauber dynamics). Renor- 

t HLRZ, Forschungszentrum Jfilich, D-52425 Jfilich, Germany. 
ZPermanent address: Institute of Physics and Astronomy, Aarhus University, DK-8000 

Aarhus C, Denmark. 
3 Institute of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark. 

189 

0022-4715/93/0700-0189507.00/0 �9 1993 Plenum Publishing Corporation 



190 Lauritsen and Fogedby 

malization group (RG) calculations have predicted that z =  2.13-2.18 in 
two dimensions and z=2 .02  in three dimensions. (2) Numerous Monte 
Carlo simulations using various techniques have been performed yielding 
results in agreement with the RG estimate. An Ising system with conserved 
magnetization (Kawasaki dynamics) belongs to model B. For  this model 
the dynamic exponent can be obtained from a knowledge of the static criti- 
cal exponents by means of the relation z = 4 - q ,  where tt is the exponent 
which characterizes the decay of the correlation function at the critical 
point. This result was obtained from a RG calculation, and was recently 
also derived by Leung from an analysis of the power spectrum of the 
current correlations at the critical pointJ 8) 

One way of determining z from simulations consists in fitting the 
magnetization autocorrelation function C(t)= <m( t )m(0) )  to a sum of 
exponentials, C(t)= Zi Aie-t/% with the largest vi interpreted as the critical 
relaxation time T. Usually one need only retain one or two terms in the 
series in order to obtain good values for the dynamic exponent. Performing 
Monte Carlo simulations for different lattice sizes L, one obtains the 
functional relationship between T and L. Using the dynamic finite-size 
scaling (FSS) ansats (9) z ~ L  z, one can  obtain the dynamic exponent z. 
This method has been used to obtain the values z=2.17_+0.04 and 
z=2 .03  +0.04 for z in two and three dimensions, respectively. (~) Fourier 
transforming the FSS form C(t)= C(O)f(t/L z) for the correlation function 
and relating the static correlations C(0) to the susceptibility by means of 
the fluctuation-dissipation theorem, the power spectrum behavior 
S(co) ~ co -(I +~/vz) was obtained. (1~ This was tested in simulations and used 
to validify Suzuki's dynamic finite-size scaling ansatz. 

In the neighborhood of a phase transition point the dynamic finite-size 
scaling ansatz m(L, t )~L ~/%h(tL -z) for the magnetization is valid. (4'H) 
For  times less than ~ ~ L" one obtains the bulklike behavior m(L, t)~ 
L-~/~(tL-Z) -~/~ = t-~/% If the system at time t = 0 is prepared in a state 
with, for instance, m(L, 0) = 1, one can extract the dynamic exponent from 
the decay toward equilibrium, provided the critical exponents/~ and v are 
known. Large-scale simulations using this method have recently yielded the 
values z~2 .18  and z ~  2.09 for the dynamic exponent in two and three 
dimensions. (4~ The concept of "damage spreading" has also been used to 
measure the dynamic exponent in Ising-like systems./5'6) Measuring the 
time it takes for a fixed damage to propagate to the edges of the system 
leads to the value z = 2.24 • 0.04 in two dimensions (5) and this value is seen 
to differ from the previously accepted value. If one instead measures the 
time v it takes for a damage to disappear, the value z=2.16_+0.02 is 
obtained (6) by (as above) using the dynamic FSS ansatz v ,-~ L ~. 

In the present paper, motivated by the considerable interest in power 
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spectrum studies of dynamical nonequilibrium systems, we undertake a 
study of the power spectrum of the magnetization autocorrelations in the 
Ising model. The power spectrum in the Ising model has a power law form 
at the phase transition point and we describe a method for determining the 
dynamic critical exponent from simulations of the magnetization power 
spectrum. Our results for the dynamic exponents for the two- and three- 
dimensional ferromagnetic Ising models using Glauber dynamics are z = 
2.19 _+ 0.03 and z = 2.05 _ 0.05, in agreement with the results quoted in the 
literature. By means of Monte Carlo simulations using Kawasaki dynamics 
we also analyze the two-dimensional Ising model with antiferromagnetic 
interactions and constant magnetization equal to zero. This system is even 
though it is coupled to a conserved quantity also assumed to belong to 
model A in critical dynamics and not to model C (12) and our result 
z = 2.16 + 0.03 confirms this and yields another estimate for the dynamic 
critical exponent. 

Coarse-grained (Langevin) equations describing interface dynamics 
such as the Kardar-Parisi-Zhang (KPZ) equation (13) or the Sun-Guo- 
Grant (SGG) equation ~ can also be analyzed in terms of power spectra. 
For the KPZ equation we find that the power spectrum generically has a 
power law form characterized by an exponent related to the roughening and 
the dynamic exponents. It is furthermore possible to obtain the known exact 
values for the critical exponents characterizing the SGG equation, using 
arguments similar to the ones recently used by Leung in order to rederive 
z = 4 - q  for model B in critical dynamics. (8) A corresponding analysis of 
Langevin equations describing self-organized critical models (15'~6~ gives a 
relation between the power spectrum exponent and the critical exponents. 
In ref. 17 some of the earliest derivations of exponent identities in dynamics 
can be found. In the present context, combining this analysis with the 
nonconserving nature of the noise in sand models leads to a hyperscaling 
relation which was previously proposed from physical and renormalization 
group arguments. (18-2~ 

Section 2 contains a discussion of the power spectrum method. In 
Section 3 we present simulation results for the dynamic critical exponent. 
In Section 4 the ideas are applied to the KPZ and SGG equations describ- 
ing interface dynamics and to self-organized critical sand models. Finally, 
in Section 5 we summarize and conclude. 

2. T H E  P O W E R  S P E C T R U M  M E T H O D  

In this section we use the scaling form of the two-point correlation 
function at a second-order phase transition point in order to obtain an 

822/72/1-2-13 
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expression for the power spectrum of the magnetization autocorrelations. 
The magnetization for a d-dimensional system is 

m ( t ) - -  V -1  f v  ddr a(r, t) (1) 

where a(r, t) is the local magnetization (up or down) at position r at time 
t and V = L  d is the volume of the system. The power spectrum of the 
magnetization autocorrelation function C ( t ) =  ( m ( t ) m ( O ) )  is 

1 ( .  

S(o9) = J | dt C(t)  e ~ - -~ Gmm(k = O, (9) (2) 

where amm(k, (,9) is the Fourier transform of the two-point correlation 
function and c0 = 2nf with f the frequency. A simple derivation amounting 
to the Wiener-Khintchine relation shows that the power spectrum can be 
obtained from (see, e.g., ref. 21) 

1 (§ 2 / 
S(m)= lira ~ m( t )  e i~t (3) 

T - ~ o o  T t = '  

which is the form we used to extract the power spectrum from the 
simulated data. As compared to determining the correlation function 
directly in the simulation and then performing the Fourier transform, the 
expression (3) is more convenient since it makes the power spectrum 
manifestly positive. 

In the power spectrum expression (2) we now use the scaling form of 
the two-point correlation function at the critical point, 

( a(r, t) a(O, 0 ) ~ ~ r - ( d -  2 + ")~( t/r ~) (4) 

Here g is a scaling function and t/ the critical exponent characterizing the 
decay of the correlations at the critical point. (22) Carrying out the integra- 
tion over time yields S(~o)= V -1 Svddr rZ+2-"-u~(o~r~), where the scaling 
function ~ is related to the correlation function. Finally, integrating over 
space leads to the power law form 

s(co) ~ v - ' c o - .  (5) 

where the exponent # is given by 

# = 1 + - -  2 - q  (6) 
Z 
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The result shows that, ideally, one should obtain a characteristic 1/co ~ 
behavior originating from the dynamic processes of the system at the 
critical point. The above formula (5) for the power spectrum could, 
alternatively, have been obtained using the Fourier-transformed form of 
the two-point correlation function (4) directly in Eq. (2). Using a scaling 
relation one obtains it = 1 + ~/vz, which corresponds to the form of the 
power spectrum in ref. 10. From Monte Carlo simulations on systems with 
known values for the critical temperature and the critical exponent q 
(either known exactly or determined from a finite-size scaling analysis) it is 
therefore possible to obtain the dynamic exponent by determining the 
power spectrum. 

In order to take into account the finite size of the systems used in the 
simulations, we use the dynamic finite-size scaling expression r ,-~ LZ,  (9) and 
make the FSS ansatz 

s ( ~  ) = v-1~o -~4J(~oL z) (7) 

The scaling function ~ has the following limits: r  const for x ~ 0% 
since there is no finite-size effect in the thermodynamic limit L ~ 0% and 
@ ( x ) ~ x  u for x ~ 0 ,  implying that S(~o) in the low-frequency limit 
approaches an L-dependent constant value. Despite of the fact that the 
dynamic FSS ansatz has been used to obtain the expression (7), and this 
expression is used in the data analysis, it will become clear from the Monte 
Carlo simulations (see the next section) that for system sizes as small as 
L = 50 only rather small finite-size effects are observed. For a 50 x 50 Ising 
system, using the formula (5), we obtained the value z=2.19_+0.03 (see 
Fig. 2), i.e., we obtain good values for z by using the expression (5), which 
was derived without using the dynamic FSS ansatz. 

From the exponential decay expression C(t),,~ e -t/~ for the correlation 
function one obtains for the power spectrum S((~)~ 2~/(~2 + co2), showing 
the existence of the characteristic time ~ in the system. The reason this 
power law form differs from Eq. (5) is due to the fact that the exponential 
decay formula for the correlation function is only valid in an intermediate 
time interval. In the damage spreading analysis in ref 6 this intermediate 
time interval was found to be difficult to determine (for an L = 24 system) 
and therefore no precise value for z could be obtained, whereas investiga- 
tions of the magnetization autocorrelation function in systems of size 
L = 50-100 yield z values with uncertainties of the order of 1 or 2%. (3) 
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3. MONTE CARLO S IMULATIONS 

In the simulations we use the standard Ising model Hamiltonian 

H= - Z  ioj (8) 

with nearest-neighbor attractive interactions and perform the simulations 
on a lattice with imposed periodic boundary conditions. We study the system 
with spin-flip Glauber dynamics, using the standard Metropolis exchange 
probabilities p=min{1,  exp(-flAH)}. This "dynamics" mimics the ther- 
mal fluctuations and the model belongs to model A in critical dynamics. 
The two-dimensional Ising model is convenient to investigate since for this 
system the critical temperature Tc = 2.2692 and static critical exponents 
are known exactly (see, e.g., ref. 1). The simulations were performed on 
workstations using a simple C program. 

When one simulates a finite system at the critical temperature corre- 
sponding to the infinite system, the finite system is actually in the ordered 
phase. This is due to the fact that a pseudo critical temperature Tc(L) for 
the finite system of size L scales as Tc(L)~ To+ aL 1/~, which is larger 
than the value for the infinite-system critical temperature. This is also 
evident from Fig. 1, which shows the time series of the magnetization 
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Fig. 1. The time signal of the magnetization in a 4 0 •  Ising model simulated at the 
infinite-system critical point with Glauber dynamics. One notices that most  of the time the 
system is in one of the ordered states where the spins are fully aligned. 
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m ( t ) =  V-~Eiai(t)  for a 4 0 x 4 0  Ising model simulated for a period 
consisting of 100,000 MCS (Monte Carlo steps). One notices that the 
system spends most of the time in a state where the spins are almost fully 
aligned. 

Figure 2 shows the power spectrum of the correlation function for 
the two-dimensional Ising model with the system size L = 50. The curve 
has been averaged over 100 independent runs each consisting of 
215= 32,768 MCS. From the slope # =  1.80 and using the expression (6) 
with q = 1/4 the value z = 2.19 +_ 0.03 for the dynamic exponent is obtained. 
Modifications of the low-frequency part  of the power spectrum, owing to 
the finite size of the system, are only noticeable for frequencies 
f ~ z - l ~ L  t ~ 1 0  -3 10 4 for system sizes L = 3 0 - 5 0 .  The power spec- 
trum for temperatures a few percent below or above Tc shows a tendency 
to curve and does not fit a straight line. Reversing the procedure, i.e., deter- 
mining the power spectrum for a sequence of temperatures, one can then 
obtain an estimate of the critical temperature. Figure 3 shows the result of 
a finite-size scaling analysis of the data for the two-dimensional Ising model 
with nearest-neighbor attractive interactions. We find the best data collapse 
for z = 2.19 + 0.03, equal to the value obtained for the L = 50 system. The 
bending of the curves at low c~L z values shows the finite-size effects. 

For  the Ising system with antiferromagnetic nearest-neighbor interac- 
tions, characterized by the Hamiltonian H=Y~<u>aiaj=--Z<,j> ( - 1 ) i a i  
( -- 1)J aj, and with the constant magnetization m(t) = V- ~ Y~ a~(t) = 0, the 

. . . . . . . .  I . . . . . . . .  i . . . . . . . .  I . . . . . . . .  i . . . . .  

10 0 

~(.r) 
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10 - 4  

- 6  
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10 4 

10 2 

lO - b  lO - 4  lO - 5  f l O  - Z  lO - 1  

Fig. 2. The power spectrum of the correlation function for a two-dimensional Ising model. 
The system size is L = 50 and the curve is an average over 100 runs. The curve fits the power 
law form S(f)~f-u with # = 1.80 4-0.02 over almost three decades, yielding z = 2.19 _+ 0.03. 
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Fig. 3. Finite-size scaling analysis of the power spectra for two-dimensional Ising models 
simulated with Glauber dynamics. For each system size the data were averaged over I00 runs. 
The slope of the data collapse curve is /~ = 1.80 + 0.02 for nearly three decades, giving the 
e s t i m a t e  z = 2 . 1 9  + 0 . 0 3 .  

appropriate quantity to consider in the power spectrum analysis is the 
staggered magnetization 

m ~ ( t ) =  V 1 E ( -1)iffi(t)~ V• E ~i(t) 
i i 

(9) 

Although the ferromagnetic (FM) and antiferromagnetic (AFM) Hamil- 
tonians are related through HFM[a] = HAVM[(~], the dynamics is different 
owing to the imposed constraint Zio- i ( t )=Zi( -1) i~bi ( t )=0 in the 
antiferromagnetic case. Since we simulate the system at the critical point 
where the magnetization m(t) is zero, the Hamiltonian (used in the field- 
theoretic analysis) must possess the symmetry r n ~ - m .  This means 
that the term relevant for model C cannot be present in the Hamiltonian 
and the antiferromagnetic Ising system belongs to model A in critical 
dynamics. {12) The staggered magnetization has the same scaling form as the 
magnetization in the Ising model with ferromagnetic interactions and we 
again obtain the expression (5) for the power spectrum. 

In Fig. 4 we show the result of the FSS scaling analysis of the AFM 
system. Typically, we simulated the systems for 215=32,768 MCS and 
averaged each system size over 100 independent runs to obtain the data 
shown in Fig. 4. The result for the dynamic exponent is z=2.16 +0.02, 
which confirms that this model indeed does belong to model A. Further- 
more, this shows that in this case the value of the dynamic exponent z does 
not depend on the dynamics imposed on the system. This is, for instance, 
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Fig. 4. Finite-size scaling analysis of the power spectra for antiferromagnetic two-dimen- 
sional lsing models simulated with conserving Kawasaki  dynamics. For  each system size the 
data were averaged over 100 runs. The slope of the data collapse curve is # =  1.81_+0.02, 
yielding the value z = 2.16 4-0.03. 
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Fig. 5. The power spectrum of the correlation function for a three-dimensional Ising model 
of size L = 30 simulated with Glauber  dynamics. The curve shown is an average over 20 runs 
each consisting of 214 MCS. The slope in the middle frequency region is # =  1.96_+0.03, 

yielding the value z = 2.05 4- 0.05. 
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known to be the case if one uses the Swendsen-Wang-Wolf duster 
updating algorithm (see, e.g., ref. 7) instead of Glauber dynamics for the 
Ising model. Near a second-order phase transition point the critical slowing 
down can be partly circumvented by using Swendsen-Wang-Wolf like 
cluster algorithms (see, e.g., ref. 7), owing to a very low value for the 
dynamic exponent Zsw for these algorithms. 

The result for a single system size for the three-dimensional Ising 
model, simulated with Glauber dynamics, is shown in Fig. 5. From the 
slope value # = 1.96 we obtain z = 2.05 + 0.05, in agreement with the results 
given in the literature. The values used for the critical temperature 
Tc=4.5141 and the static critical exponent t/=0.030 were taken from 
ref. 23. 

4. APPLICATIONS TO "HEIGHT"  MODELS 

We now investigate the corresponding power spectra of the Kardar- 
Parisi-Zhang (KPZ) and the Sun-Guo-Grant (SGG) equations describing 
interface dynamics, and power spectra of self-organized critical sand 
models. 

The KPZ equation was proposed in order to describe the long-time, 
long-wavelength (hydrodynamic) limit of the dynamics of nonequilibrium 
interface growth processes. (~3) The coarse-grained KPZ equation for the 
height profile on a d-dimensional substrate reads 

ah z 2 
- -  = vV h + ~ (Vh)  z + t/(x, t) 
0t 

(lo) 

where q(x, t) is a Gaussian noise term with zero mean and short-range 
correlations 

(q(x, t) t/(x', t')> =2Df(x -x ' )  6( t -  t') (11) 

The v term describes diffusion, while the nonlinear 2 term determines the 
growth velocity at the interface. It is generally believed that the essential 
physics of various growth models is captured by the continuum theory 
proposed in ref. 13. The KPZ equation can be transformed into the 
Burger's equation by substituting r t) = -Vh(x, t). In one dimension the 
Burger's equation has been studied in the context of a driven diffusive 
system (see, e.g., the review in ref. 12; see also the discussion of the Burger's 
equation in ref. 17), where, using the mode-coupling expansion, the current 
correlations (j(t)j(O)) in the high-temperature homogenous phase were 
calculated. (24) The current correlations lead to the power spectrum 
behavior S((o)~ co -7/3 for the driven diffusive system in one dimension. 
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From the dynamic RG analysis of the KPZ equation (13) the height 
correlations were determined and generically they have the scaling form 

(h(x, t) h(0, 0))  = b2Z(h(x/b, fib-') h(O, 0 ) )  ~ xZZh(t/x z) (12) 

where Z is the roughening exponent and z the dynamic exponent. In one 
dimension the exact values of the critical exponents are Z = 1/2 and z = 3/2 
and simulation results on various growth models are consistent with these 
values. The exponents fulfil the relation Z + z = 2, which is known to be 
valid in any dimension and follows from a reparametrization invariance of 
the KPZ equation, corresponding to Galilean invariance for the Burger's 
equation. (17) The scaling function/~(y) has the limiting values h(y)  ~ const 
for y ~ 0 ,  while h ( y ) ~  y2Z/z for y ~  ~ .  Defining the surface width as 
w2= ( ( h -  @ ) ) 2 ) ,  one has the dynamic scaling form ~13) 

(t z/z t ~ L ~ 
w(L, t) = LZw(t /L z) ~ (~ LZ; 

t >> L z (13) 

These scaling properties are used in simulations to estimate the critical 
exponents. Starting from a configuration with a flat surface, the width will 
initially grow as t z/z. Typically, it requires large systems in order to obtain 
good values for the ratio Z/z. At long times the width saturates at a value 
proportional to L z, and from simulation results on different system sizes 
the roughening exponent can be obtained. 

Corresponding to our study of the power spectrum of the magnetiza- 
tion autocorrelations in the Ising model, we consider the power spectrum 
of the height correlations 

S(co) = fv  d t (  H(t)  H(O) ) e '~ ~ (I/~(~o)1 ~) (14) 

where the average height at time t is defined as 

H ( t ) =  V -1 f d a x h ( x ,  t) (15) 

An analogous calculation to the one leading to Eq. (5), but now using the 
scaling form (12), yields 

S((.o) ,.w V -  1(/) - r  (16)  

with the exponent 

2 z + d  
4~= 1 + - -  (17) 

Z 
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Notice that no parameter has to be "fine tuned," corresponding to T= To, 
to obtain the long-range temporal correlations implicit in the above power 
law behavior for the power spectrum. Using the exact values in one dimen- 
sion, one obtains S(e))~ V lo9-7/3 and this agrees with the result obtained 
in ref. 24 for the current correlations in the driven diffusive system; see the 
discussion following Eq. (11). This connection was previously remarked in 
a study of fluctuations in the velocity profile v(t)=~ dUr dh/Ot of the 
growing interface. (25) From the factorization of the four-point correlation 
function into products of two-point correlation functions the power 
spectrum of the velocity fluctuations was calculated with the result 

I V((D)l 2 ~ ,.~ V lfD ~, ~ = ( d  + 4)/z - 3. From the identity )~ + z = 2 and the 
definition (15) of the average height, which yields g(co)=-icoH(e)), our 
result is seen to agree with the c~ value reported in ref. 25. Recently, using 
a method similar to ours, an analysis of temporal correlations of the 
velocity profile in growth models has been performed, (26) and in this work 
the predictions were confirmed in simulations on various growth models. 
Owing to the lower z values, compared to, for instance, the Ising model, 
more pronounced finite-size effects were observed for the power spectra in 
the growth models. 

If the total height in, e.g., the KPZ equation is conserved, the 
appropriate quantity to consider in the power spectrum analysis is the 
current rather than the height. A system with a conserved height is 
generically described by a Langevin (continuity-like) equation 

ah 
- - =  - v . j ( x ,  t) (18) 
Ot 

where the current is j(x,  t )=  VF[h] + r/(x, t). The functional F[h] depends 
on the system under investigation, whereas the noise term q(x, t) has 
correlations given by Eq. (11). Sun, Guo, and Grant studied the case 
F[h] = vV2h + (2/2)(Vh) 2 corresponding to conserved total height for the 
KPZ equation. The SGG equation was investigated by RG calculations 
and the exponents were calculated to all orders in e=  d c - d  (de=2). (t4) 
The equation is invariant under a reparametrization, which leads to the 
relation 

Z + z = 4  (19) 

among the exponents defined in Eq. (12). Our calculation for the KPZ 
equation can be repeated and the power spectrum (16) is described by the 
same value for the exponent, r = 1 + (2X + d)/z, as for the KPZ equation 
[see Eq. (17)]. 
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among the 
obtains 

We now follow the arguments of Leung Is) in order to determine the 
critical exponents characterizing surface growth according to the SGG 
equation. First, we consider the current along a fixed direction denoted the 
parallel direction. The average value of the current ( j )  is zero, since 
the system is not driven. The power spectrum of the autocorrelations of the 
average current j ( t )  = V -~ ~ v dax Jll( x, t) is 

S j j ( c o ) = f d t ( j ( t ) j ( O ) )  io, t 1 -  e = ~ Gjj(k = 0, co) (20) 

Fourier transforming the Langevin equation (18), ah/~t = - V -  j, one 
obtains coh~o, = k "Jk~,, which yields the power spectrum (8) 

Here Ghh is obtained by Fourier transforming equation (12), yielding 
~hh(k,~o)=k ~2z+d+z)G(o~/kZ), with 6 a scaling function. Using this 
expression, one obtains for the power spectrum the form 

1 
- o~ (Z-2-2z-a)/z (22) 
V 

since Sjj(co) is finite and positive. 
A current density of the form j ( x , t ) = V F [ h ] + t l ( x , t )  yields 

L,o,= - ikPk,  o,+Tlk,~,, and since (7/ko,)=0, it follows that ( [L=0 .~12)=  
(lT/e=o.~,lZ)=const, i.e., that ~ j j (k=0 ,  co)=(l]k=o,, ,~12)=const,  and 
therefore from Eq. (20) that Sjj(co) = const. (8) Hence the SGG equation has 
a white noise power spectrum, but this is only compatible with Eq. (22) if 
the relation 

z = 2 + 2 ) ~ + d  (23) 

exponents is fulfilled. Together with the identity (19), one 

1 0 + d  2 - d  
z =  3 ' Z=  3 (24) 

in agreement with the RG calculation in ref. 14. The (height) power 
spectrum exponent ~ can now be calculated, r = 2(7 + d)/(10 + d), and one 
obtains ~ = 16/11 in one dimension and ~ = 3/2 in two dimensions. 4 

4 In higher dimensions (above the critical dimension dc = 2) the above exponent values are not 
valid, and the exponents take the "classical" values z = 4 and ~ = 0. 
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"Self-organized critical" (SOC) sand models, i.e., extended dynamic 
many-body systems that self-organize into a critical state characterized by 
temporal and spatial long-range correlations, (~s) were introduced in order 
to describe the ubiquitous " l / f  noise" observed in signals from sources 
ranging from the light of quasars to the flow of the river Nile. However, it 
was found that the spatiotemporal scaling in the SOC state does not 
necessarily manifest itself in nontrivial exponents for the power spectrum 
and, furthermore, it was found that even deterministic models can exhibit 
the same behavior, i.e., the criticality is not caused by, but, on the contrary, 
is robust with respect to noise. ~6) 

The basic equation describing sand models with conserving dynamics 
and nonconserving noise (sand added to the sandpile) is 

c~h 
0t - - V  . j +  t/(x, t) (25) 

where j(x, t) is the current and r/(x, t) the nonconserving noise with 
correlations as in Eq. (11). (is) In molecular beam epitaxy (MBE) growth 
the surface relaxes under mass conservation and this leads to a growth 
equation of the type (25) with the current j(x, t)=V(V2h) plus nonlinear 
terms. r176 An equation of the form (25) has been argued to exhibit 
generic scale invariance, i.e., correlations that under generic conditions 
decay algebraically in space and time. (27~ Even when the dynamics is non- 
conserving it was found, in simulations, that the system still self-organizes 
into a critical state, but with the critical exponents depending on the "level" 
of conservation.(~6) 

We now determine the power spectrum for the above Langevin 
equation (25) (see also ref. 28 for a recent discussion of power spectra 
in sandpile models). Integrating the equation over space gives 
~3~k=o/~?t=Ok=o(t), since the current vanishes at the border, and one 
obtains for the power spectrum S ( ~ ) ~  (]B(~o)] 2) the "random walk" 
behavior(2S,27/ 

1 (26) S(co)~ ()Ok=o,~) ~) oc ~ 

yielding the value r = 2 for the exponent. The power spectrum exponent is 
still given by ~O = 1 + (2 z + d)/z, since the scaling form for the sand model 
is given by Eq. (12) and therefore one obtains the hyperscaling relation 

z = 2g + d (27) 

in agreement with the results in refs. 18 and 25. The relation has been 
derived for MBE growth models from physical (19) and renormalization 
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group arguments. (2~ Using the identity (19), which holds for the 
nonlinear MBE equation of type (25) studied in ref. 20, one obtains the 
known exponents z = (8 + d)/3 and Z = (4 - d)/3. 

To describe a "real" sandpile, the direction in which the sand will flow 
has to be singled out compared to the other directions. In the RG analysis 
one introduces the anisotropy exponent ~ (under the rescaling xll ~ bxll, 
one has h--* bXh, t ~ bZt and x• ~ br177 since anisotropies are dynamically 
generated; see the model in ref. 18. The scaling form of the height 
correlations becomes 

(h(xll ,  x•  t) h(O, 0 ) )  = bZZ(h(x!Jb, x•  ~, t/b z) h(0, 0))  (28) 

and the exponent in the power spectrum behavior S(co)~ co p is changed 
to p =  1 + [1 +2)~+ ( d - 1 ) ~ ] / z .  The argument yielding ~p=2 is still valid, 
i.e., one obtains p = 2, leading to the relation 

z =  1 + 2 Z +  ( d -  1) (29) 

in accordance with ref. 18. The above relation reduces to the hyperscaling 
relation (27) if there is no anisotropy present. In ref. 28 nonequilibrium 
"Flory-type" arguments were used to obtain values for the exponents for 
various growth and self-organized critical models, and the above relation 
appears as an intermediate result. 

For systems with long-range noise correlations of the form 

<r/(x, t)r/(x', t')> = 2 D  I x - x ' l  2~ ~ I t - t ' l  2~ (30) 

analyzing the behavior of the current and height power spectra as k--* 0, 
one can obtain the new scaling relations z = 2 +  2)~+ d - 2 p  (for 0=0) ,  
replacing Eq. (23) for the SGG equation, and z = (2Z + d -  2p)/(20 + 1 ), 
replacing Eq. (27) for the nonlinear MBE equation (25). For the SGG 
equation one investigates the current power spectrum, whereas for the 
nonlinear MBE equation the power spectrum of the height correlations is 
investigated. The current power spectrum for the SGG equation is assumed 
to show a white noise behavior, and combining the new scaling relation 
with the identity (19) yields the critical exponents z = (10 + d - 2 p ) / 3  and 
Z = (2 - d +  2p)/3, in agreement with the dynamic RG calculation in ref. 29. 
For the nonlinear MBE equation with exponents fulfilling Eq. (19) one 
obtains z = (8 + d -  2p)/(3 + 20) and Z = ( 4 -  d +  2p + 80)/(3 + 20), which 
agree with the results obtained in ref. 29 corresponding to the case 0 = 0. 

5 The hyperscaling is only supposed to be valid for dimensions below the critical dimension, 
which will depend on the specific form of the current. 
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5. C O N C L U S I O N S  

In the present paper we have determined the value of the dynamic 
critical exponent z from Monte Carlo simulations of the power spectrum 
of the magnetization autocorrelation function. The power spectrum 
shows a power law behavior at the phase transition point with the power 
spectrum exponent related to the dynamic exponent. For two-dimensional 
Ising models with ferro- and antiferromagnetic interactions the values 
z = 2.19 _+ 0.03 and z = 2.16 -t- 0.03 were obtained. For the three-dimen- 
sional Ising model we obtained z = 2.05 _+ 0.05. These results are in agree- 
ment with the results quoted in the literature and the uncertainties are of 
the same magnitude as for results obtained by other methods. 

The power spectrum exponent for the Kardar-Parisi-Zhang and 
Sun-Guo-Grant equations describing interface dynamics was shown to be 
related to the dynamic and roughening exponents. Combining this relation 
for the SGG equation with arguments which were recently used to rederive 
the value of the dynamic exponent for model B in critical dynamics, we 
obtained the known exact values of the exponents for the SGG equation. 
We also investigated self-organized critical sand models by means of power 
spectra and obtained recently proposed hyperscaling relations. Finally, 
power spectra for growth models with long-range noise correlations were 
investigated. 
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